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Abstract – Countdata is encountered in different forms. This include count data without zeros, count data with excessive number of zeros, 
counts with large observations, and many others. Different statistical models are used in analyzing these forms of count data. This paper 
provides an overview of the model frameworks and possible selection criteria that are appropriate for analyzing the various forms of count 
data. 
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1 INTRODUCTION
ount data is encountered in almost all areas of research 
including, economics, medicine, management, industrial 
organizations and many more [1]. Examples of count data 

include the number of road accidents on a particular high way 
in a specified period of time, the number of insurance claims 
paid by an insurance company in a year, the total number of 
epileptic seizures in a week, number of defective chips in a 
batch of manufactured computer chips, etc.  The most 
common approach used in modeling this type of data is the 
Poisson regression.  However, due to overdispersion (extra 
variability) associated with the use of the Poisson model, 
practitioners routinely make use of the negative binomial 
model as an alternative [2].  

Although Poisson and negative binomial models are the 
building blocks for count data, there are a number of 
extensions to these models that accommodate special features 
of the available data. Some of these extensions include hurdle 
effects, zero inflation, zero truncation, sample selection and 
severalothers [3], [4], [5].  In a similar fashion, generalized 
linear mixed models (GLMM) extend the Poisson and negative 
binomial models for the analysis of longitudinal count data 
[6]. Moreover, several proposals have been made to extend the 
Poisson and negative binomial models to accommodate 
multivariate data[7]. This paper explores the Poisson and 
negative binomial models, with extensions including the zero-
inflated, hurdle and zero-truncated models. Different datasets 
are considered to illustrate the use of these model extensions 
in practice.   

The organization of the paper is as follows. Section 2 
introduces the Poisson and negative binomial models, as well 
as the quasi Poisson model. Extensions of the Poisson and 
negative binomial models are discussed with practical 
examples in Sections 3. Some remarks on software is 
presented in Section 4. Finally, Section 5 provides concluding 

remarks to the entire write-up. 
2 POISSON AND NEGATIVE BINOMIAL 

MODEL  
2.1 Poisson Regression 
By definition, the number of events that occur in a given 
period of time follows a Poisson distribution [8].  A random 
variable Y is said to have a Poisson distribution with 
parameter µ , if it takes integer values y = 0, 1, 2, 3,....  That is, 

it is assume that the response variable iy is a count, which can 
take values 0, 1, 2, ….. A probability model for the Poisson 
distribution can be written as: 
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The mean and the variance of the Poisson distribution is 
shown to be (Y) (Y)E Var µ= = . The Poisson regression model 
is specified using the generalized linear model (GLM) notation 
as: 

0 1 1( ) ...i i k kg x xµ η β β β ′= = + + + = kxβ  
GLM extends linear regression model and allow for the 
modeling of data that follow other probability distributions 
aside the normal distribution [9]. In GLM, three components 
are distinguished namely, the random component, the 
systematic component and the link function. The random 
component specifies a probability distribution for the response 
variable (Y), the systematic component identifies the set of 
predictors used, and the link function species a function that 
maps E(Y) to the systematic component [10]. Here, g is the 

canonical link function and ( )i ig µ η= is the mean response. 
The linear predictors can be related to the mean of the 
response as 

1( ) (i ig gµ η −′ ′= = kxβ)  
Although the identity link is sometimes used, for the Poisson 
regression, the log link is the most common link function. In 
using the log link, it guarantees that,  all  of  the  fitted  values  
for  the  response  variable  will  be  positive. The method of 
maximum likelihood is used in the estimation of the 
parameters of the Poisson regression model. The specification 
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of the (log) - likelihood and inference can be found in [10]. 

It is important to emphasize that, for the standard Poisson 
regression, the conditional mean of the outcome is equal to its 
conditional variance. However, in practice, there is often 
overdispersion in the sense that, the conditional variance 
exceeds the conditional mean. That is, overdispersion occurs 
when the observed counts have higher variability than that 
expected by the Poisson regression model [2]. Some of the 
consequences of overdispersion includes the underestimation 
of standard errors, which leads to wrongfully inflating the 
significance level. 

2.2 Quasi-Poisson model 
The issue of overdispersion can be addressed by using the so 
called quasi-Poisson model. With this approach, the standard 
Poisson regression model is adjusted to estimate an additional 
dispersion parameter. For the standard Poisson model, the 
mean variance relationship is specified as var(Y) E(Y),φ= and 
φ is constrained to be equal to one. However, in the presence 
of overdispersion, the value ofφ is mostly greater than one. 
Although underdispersion is quite rare, it comes about when 
the variance is smaller than the mean.  In that case, the value 
ofφ is less than one [2]. With the quasi-Poisson model as 
opposed to the standard Poisson model,φ is not constrained to 
be equal to 1, but is estimated from the data. Consequently, 
the parameter estimates of the quasi-Poisson model is the 
same as that of the standard Poisson model. However, their 
standard errors are adjusted (increased), which in effect affects 
their significance level. This is achieved by multiplying the 
covariance matrix of the parameters by the value of the 
overdispersion parameterφ [10].  

2.3 Negative Binomial Regression 
Aside the use of the quasi-Poisson model in accounting for 
overdispersion, a much more formal alternative is to use a 
negative binomial model [11]. The negative binomial 
distribution is quite similar to the Poisson distribution, 
however, unlike the Poisson distribution, the variance of the 
negative binomial distribution exceeds its mean. As such, if 
the variance of the observed outcome is suspected to be larger 
than its mean, the negative binomial distribution is more 
suitable compared to the Poisson distribution. Using the 
notation in [12], the negative binomial distribution can be 
parameterized as a mixture of Poisson-gamma as follows: 

11
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With this parameterization, µ is the mean ofY, whereasα  is 
the heterogeneity (overdispersion) parameter. Unlike the 
Poisson distribution whose variance is as well equal to µ , the 

variance of the negative binomial distribution is 2µ αµ+ . As 
such, the negative binomial distribution is over-dispersed 
compared to the Poisson distribution. The presence of 
overdispersion results in values of α greater than zero [2]. 
However, asα → 0 , the negative binomial distribution 
converges to the Poisson distribution. This form of 
parameterization of the negative binomial distribution is 
called the NB2 (NB for negative binomial). Basically, two 
different forms of the negative binomial models namely, NB1 
and NB2 are in use. However, the NB2 model is often the 
preferred choice since, it reduces to the Poisson distribution 
whenα  is 0 [13]. Hilbe [13] provides the detail specification of 
the (log)-likelihood as well as inference for the negative 
binomial model. 

2.4 Illustration 1, Horseshoe crab data 
The data from a study of nesting horseshoe crabs [2], is used 
as the first illustrative data. The study investigated factors that 
affects the number of male crabs (called satellites), 
residingnear a female crab’s nest. Several variables were used 
as explanatory variable, however, we consider only width of 
the female crab as predictor of the number of satellites 
attached to her in her nest. First, a Poisson regression is fitted 
to the data, followed by the quasi Poisson and negative 
binomial models.  

The parameter estimates of the fitted models together with 
relevant output are presented in Table 1. As expected, the 
parameter estimates for the Poisson and quasi Poisson are the 
same, however, their standard errors differ. In checking the 
goodness of fit of the Poisson model, overdispersion is found 
to be present in the horseshoe crab data. This can be seen in 
the underestimation of the standard errors of the Poisson 
model, as compared to that of the quasi Poisson and the 
negative binomial models. Aside comparing the standard 
errors, dispersion can also be measured by using the scaled 
deviance and/or the scaled Pearson chi-square. When the 
values of these statistics are much larger than one (1), the 
Poisson mean variance relationship may not be valid and the 
data is said to be overdispersed.  

Although all three models lead to the same conclusion, that is, 
a strong positive width effect on the number of satellites, in 
some analyses, the results of the Poisson model might differ 
from that of the quasi Poisson and/or negative binomial 
models.  
 
 

Table 1. Parameter estimates for the Poisson, quasi Poisson and the negative binomial models. 
  Poisson, log link quasi-Poisson negative binomial 

Effect   estimate s.e p-value estimate s.e p-value estimate s.e p-value 

intercept  -3.30 0.54 < 0.0001 -3.30 0.99 0.0008 -4.0525 1.3528 0.0027 
width   0.16 0.02 < 0.0001 0.16 0.04 < 0.0001 0.1921 0.0510 0.0002 
 s.e: standard error 
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3 EXTENSIONS OF POISSON AND NEGATIVE 
BINOMIAL MODELS 
3.1 Zero inflated Poisson/ negative binomial models 
In some datasets, the amount of observations that have a value 
equal to zero is higher than it would be expected in a Poisson 
model. For such datasets, the zero-inflated Poisson (ZIP) 
model [4] is appropriate. ZIP assumes that, the data comes 
from two sub-populations namely, the excess/inflated zero 
population, and the population consistent with the Poisson 
distribution. With this, the response takes the value zero (0) 
with probability of p and has a Poisson distribution with 
probability of 1-p. Given that iy follows a ZIP distribution 

with parameters p and µ , its probability distribution can be 
specified as  

(1 ) if 0

( | , )
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such that 0 1, 0i ip µ≤ ≤ > . iμ is the expected Poisson 

count for the ith individual, and ip is the probability of extra 

zeros. The mean and variance of theZIP are (1 )i ip µ− and 

(1 )(1 )i i i ip p µ µ− + respectively.  In the absence of extra zeros, 

in which case 0ip = , the ZIP reduces to the Poisson model 

with both mean and variance equal to iµ . In fitting the ZIP 
model, a logistic regression is used to model the probability of 
zero counts, followed by a standard Poisson model for the 
non-zero counts. The data on horseshoe crab is ones again 
considered for the illustration of the ZIP model. The histogram 
of the distribution of the number of satellites attached to a 
female crab is provided in Fig 1. Most of the crabs have zero 
satellites attached to them in their nest. That is, out of the 173 
crabs, 62 (approximately 36%) had nosatellites around them in 
their nest.Therefore, a ZIP model is fitted, to study whether 
the width of a female crab has an effects on the number of 
satellites staying near her nest. Also, we will use the ZIP 
model to find out if having no satellite around a female crab’s 
nest is dependent on the crab’s width.  

 
The parameter estimates of the resulting model together with 
other relevant output are presented in Table 2. Contrary to the 
results of the previous models namely, Poisson, quasi Poisson 
and negative binomial, the width of a female crab has no effect 
on the number of satellites attached to it. However, from the 
binomial model for the inflated zeros, the higher the width of 
the female crab, the lower the odds of having zero (0) satellite 
attach to it.In other words, if a crab was to increase its width 
by  1cm, the odds that it will have no crab attached to her in its 
nest would decrease by a factor of exp(-0.5010) = 0.606. 

 
Since the Poisson, quasi Poisson and negative binomial 
models fail to account for the inflated zeros, their results show 
that crabs with higher widths have more satellites around 
them. However, from the ZIP model, having higher width 
decreases the odds of having no satellites attached to the 
female crab. A straightforward question to ask is, which of the 
models namely, standard Poisson, quasi Poisson, negative 
binomial or ZIP model do we consider ‘best’? We can use 
either AIC or BIC to answer this question. AIC and/or BIC 
are/is used for comparing non-nested models based on their 
maximum likelihood. Oppong [9] presents the mathematical 
formulation of AIC/BIC, together with their basic properties. 
Here, we presents the results from using AIC as the criterion 
for finding the “best” model. It should however be 
emphasized that, using BIC as the selection criterion leads to 
the selection of the same model. The AIC for the standard 
Poisson, negative Binomial and ZIP models are respectively 
927.2, 757.3 and 737.6. The AIC of the quasi Poison model 
(QAIC - quasi AIC) is not provided since its validity in 
comparison to AIC has not been established [14].  QAICs have 
been developed only to be used within the quasi class of 
models and not between quasi models and models with 
distributional forms [15]. From the reported AICs, the ZIP 

Table 2. Parameter estimates, standard errors and p-values for the zero 
inflated Poisson model 

 Poisson with log link binomial with logit link 

Effect  Estimate s.e p - 
value 

Estimate s.e p – 
value 

(Intercept) 0.574 0.593 0.333 12.423 2.693 < 0.0001 

Width  0.035 0.022 0.114 -0.502 0.104 < 0.0001 
s.e: standard error 
 

 

Fig 1. Number of satellites attached to a female crab 
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model is the best fitting model. It captures the excess zeros 
present in the analyzed data. 

When one suspects overdispersion together with excess zeros, 
the zero inflated negative binomial model is the preferred 
choice of model. For the analysis of the horseshoe crab data, in 
comparing the quasi Poisson and negative binomial models to 
the standard Poisson model, overdispersion was found to be 
present. Further, comparing the fit of the ZIP model (which 
accounts for the excess zeros) to the negative binomial model 
using their AIC’s, we can conclude the existence of excess 
zeros in the horseshoe crab data.  As such, we fit a zero-
inflated negative binomial model to the data, to account for 
both overdispersion and excessive zeros. Although the 
parameter estimates and standard errors for the zero-inflated 
negative binomial model are not presented, they lead to the 
same conclusion as the zero-inflated Poisson model. However, 
the AIC of the zero-inflated negative binomial model is 
smaller than that of the ZIP model:  716.63 as against 737.64. 
Consequently, the fit of the zero-inflated negative binomial 
model surpasses that of the ZIP model. 

3.2 Hurdle Poisson/ negative binomial model 
Hurdle models, assuming either Poisson or negative binomial 
distributions are similar to, but different from their zero 
inflated counterparts. They are similar in the sense that, they 
have both been developed to account for zero-inflated 
outcome data with overdispersion (negative binomial) or 
without overdispersion (Poisson distribution). However, these 
two model frameworks differ in terms of their analysis and 
interpretation of the zero counts [8].  

Zero-inflated Poisson/negative binomial splits the zero data 
into the genuine Poisson/ negative binomial zero data and the 
zeros which are due to the structure of the data. As an 
example, consider a data on the number of sexually 
transmitted diseases (STDs) contracted by a group of 
individuals living in an STD prone locality, in a period of 10 
years. Genuinely, some of the participants may not contract 
STD within the study period. This represents the genuine zero 
data. On the other hand, some individuals may have no STD 
count within the 10 years period because they do not have sex. 
These zeros are observed as a results of the structure of the 
data. That is, all things been equal, these participants cannot 
have STDs.  

On the contrary, hurdle model does not split the zero data. It 
rather considers all the zero data to emanate from one 
structure. That is, with hurdle models, it is assumed that zeros 
are generated by a different process other than that generated 
by the positive counts. In this sense, the zeros act as hurdles 
that one needs to cross before getting to the positive counts. 
To illustrate this, consider a data that records the number of 
hours that people use their computers in a month. Obviously, 
people who do not use computers will records zero (0) hours 
of computer use. Conversely, all things been equal, computer 
users cannot record zero computer use in one month.Ideally, a 
hurdle model combines a count data model, ( ; , )f y x β , for 

the non-zero counts and a zero hurdle model, ( ; , )f y z τ , for 
the zero counts. For modelling the non-zero counts, the 
Poisson or negative binomial distribution can be used. On the 
other hand, a binomial model or a censored count distribution 
can be used for the zero hurdle model [11]. The model can be 
specified in terms of β  andτ as: 

( 0; , ) if 0
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The parameters β and τ can be estimated by maximum 

likelihood. Given iµ as the expected number of events for the 
ith subject, the mean regression relationship is written using 
the canonical log link as 

log( ) log(1- ( = 0; )) - log(1 ( 0; , ))i i f y z,τ f y xµ β′= − =xβ +  

Depending on the nature of the data at hand, one can opt for 
either the zero-inflated model or the hurdle model. It should 
be emphasized that, these two models have different 
interpretations and can lead to different results. Evidently, 
considering the horseshoe crab data, the zero-inflated model is 
the best model choice, in the sense that, a female crab can 
possibly (and more likely) have zero satellites attached to it in 
its nest. That is, the process generating the non-zero outcomes 
is the same process generating the zero counts. 

3.3 Zero truncated Poisson/ negative binomial models 
If the distribution ofYis Poisson but cannot take zero as an 
outcome, the zero-truncated Poisson regression model is used 
[16]. To be more precise, the zero-truncated Poisson regression 
is used to model count data for which the values (response) 
cannot be zero. This kind of data is particularly common in 
studies where individuals become part of the sample only 
after the first count has been observed. An example is data 
that records the number of times patients in a malaria clinic 
contract malaria in a five year period. Obviously, all patients 
in a malaria clinic should have contacted malaria. Hence, the 
least possible outcome is one malaria case. With this kind of 
data, zero counts cannot be observed for any of the patients in 
the sample, hence the data is said to be truncated at zero. It is 
worth mentioning that, truncation can occur at any value. 
However, zero-truncation is a very common occurrence in 
practice, and require attention.  Cameron and Trivedi [11] 
emphasized that suitable modification should be made to the 
likelihood function of the Poisson/ negative binomial 
likelihood, to prevent inconsistent parameter estimates 
associated with truncation. The density of the zero-truncated 
Poisson is specified as: 

(y | )
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Construction of (log)-likelihood and obtaining maximum 
likelihood estimates of the specified density is 
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straightforward. Similar to the standard Poisson model, the 
zero-truncated Poisson model also suffers from the adverse 
effects of over-dispersion. In the presence of overdispersion, 
the zero-truncated Poisson model leads to biased and 
inefficient parameter estimates [17]. To address this, the zero-
truncated negative binomial is considered. 

With overdispersed count data for which zero cannot be a 
possible outcome, the zero-truncated negative binomial model 
is the best choice [16]. The density of the zero-truncated 
negative binomial distribution can be written as

1
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Long and Freese [17] provide details on model specification 
and inferences thereafter.  

3.4 Illustration 2, Malaria data. 
Data on the number of malaria cases recorded in a group of 
children treated in a malaria clinic from 2006 to 2010 is 
considered. The data records the number of times each of 174 
children contracted malaria in the five year period. For 
illustration purpose, we restrict ours analysis to the 127 
children with complete records at the end of the study period. 
The malaria clinic is meant mainly for the treatment of malaria 
cases. As such, patients who visit this clinic have recorded at 
least one malaria case. This is a perfect example of a zero 
truncated count data – it is not possible for any of the study 
participants to record a zero malaria case. Aside the response, 
which is the number of malaria cases recorded in five years, 
the data records the gender and whether or not a child lives in 
a residential area, as possible predictors. 

We first fit a zero-truncated Poisson model to the data and 
then, compare its fit to a zero-truncated negative binomial 
model. Likewise, the data will be studied for the 
presence/absence of overdispersion. Although the identity 
link is sometimes adequate for the zero-truncated negative 
binomial model, just like with the Poisson GLM, the log link is 

used. Given ιµ  as the mean malaria incidence for the ith child, 
the zero-truncated Poisson/negative binomial regression 
model can be specified in terms of gender and residency as  

( ) = + gender  + Residencyi 0 1 i 2log µ β β β  

Both gender and Residency is coded as 0, 1.  1 corresponds to 
females and children living in non-residential area for gender 
and residency respectively. The results from fitting both 
models are presented in Table 3. As noted earlier, the negative 
binomialdistribution converges to the Poisson distribution as
α → 0 . The presence of overdispersion is observed by the 

significant effect of α,  as presented in Table 3. This implies 
that, α, is significantly different from zero. Hence, the fit of the 
zero-truncated negative binomial model is preferred to that of 
the zero-truncated Poisson model, which does not account for 
overdispersion.  

Is it necessary to worry about the fact that zeros are not 
observed as possible counts in the data? Why not fit just a 
standard Poisson or a standard negative binomial model? To 
answer these questions, we fit a standard Poisson and a 
negative binomial model to the data and compare their AICs 
to that of the zero-truncated Poisson and the zero-truncated 
negative binomial models. The AIC are 564.73, 553.76, 553.70 
and 533.51 respectively for the standard Poisson, negative 
binomial, zero-truncated Poisson and the zero-truncated 
negative binomial models. Evidently, it is necessary to account 
for the truncated zeros in the analysis. The zero-truncated 
negative binomial model fits the data well, compared to the 
other models. From the reported AICs, the standard negative 
binomial model is comparable to the zero-truncated Poisson 
model. This might in part be due to the overdispersion that is 
not accounted for by the zero-truncated Poisson model. After 
accounting for overdispersion using the zero-truncated 
negative binomial model, the fit is drastically improved. As 
noted in [9], a difference in AIC of more than 10 is often 
considered a strong evidence in selecting the model with 
smaller AIC. Hence, among all the fitted model, the zero-
truncated negative binomial model is considered the ‘best’ 
fitting model. 

4 SOFTWARE 
Several software packages are available for fitting models to 
count data. In this paper, we restrict attention to SAS, R and 
Stata. In fitting a standard Poisson regression model, the 

Table 3. Parameter estimates for the zero truncated Poisson and negative binomial models 

 Zero-truncated Poisson Zero-truncated negative binomial  
Effect  Estimate Standard Error p - value Estimate Standard Error p - value 
(Intercept) 0.6586 0.1734 0.00015 0.5507 0.2181 0.0116 
Female   -0.1410 0.0969 0.1458 -0.1593 0.1378 0.2476 
Non-residency 0.8447 0.1742 <0.0001 0.9169 0.2167 <0.0001 
α  - - - 1.4561 0.3741 <0.0001 
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GENMODprocedure in SAS, the glm function in Rand 
thepoisson command inStatacan be used. For the standard 
negative binomial model, the SASGENMOD procedure, the 
glm nb(negative binomial) function in the MASS library of R, 
and the nbreg command in Stata can be used. By specifying 
the distribution as ‘zip’, the GENMOD procedure in SAS can 
be used in fitting a zero-inflated Poisson model. Likewise, 
specifying the distribution as ‘zinb’ in the model statement of 
the GENMOD procedure in SAS fits a zero-inflated negative 
binomial model. The pscl package in R together with the 
zeroinfl function is required for fitting a zero-inflated Poisson 
model. Using the same zeroinfl function, and specifying the 
distribution as “negbin” fits the zero-inflated negative 
binomial model in R. The ‘zip’ and ‘zinb’ commands are used 
in Stata to fit the zero-inflated Poisson and zero-inflated 
negative binomial models respectively.  

For fitting a hurdle Poisson/ negative binomial model, the 
FMM (finite mixture model) procedure in SAS can be utilized. 
In R, the pscl package together with the hurdle function is 
used in fitting a hurdle model. Currently, Stata does not have 
a specific command for fitting a hurdle model. On the other 
hand, several written commands are available to estimate the 
parameters of a hurdle model. McDowell [18] presents how to 
use a combination of existing commands to estimate the 
parameters of a hurdle model inStata. Likewise,Hilbe [19] has 
written several commands in Stata for estimating the 
parameters of a hurdle model. These include the hplogit 
(hurdle poisson model) and hnblogit (hurdle negative 
binomial model) commands.  

One can fit a zero - truncated Poisson/ negative binomial 
model in SAS with PROC NLMIXED by specifying its log 
likelihood function. Similarly, by stating that 
DIST=TRUNCPOISSON or TRUNCNEGBIN, the FMM 
procedure can be used to fit a zero - truncated Poisson or 
negative binomial model in SAS. In R, the vglm function in 
the VGAM package can be used to fit a zero – truncated 
Poisson/ negative binomial model. This function fits a flexible 
class of models called the vector generalized linear models, to 
a wide range of distributions [20]. Specifying family = 
‘pospoisson’ and ‘posnegbinomial’ via the vglm function fits 
the zero – truncated Poisson and zero – truncated negative 
binomial models respectively. In Stata, the ztp command fits a 
zero-truncated Poisson model, whereas the ztnb or tnbreg fits 
a zero – truncated negative binomial model 

5 CONCLUSION 
In the analysis of count data, the choice of model needs careful 
consideration. These considerations should be based on 
several factors including the features of the available data. 
These features include overdispersed count data, data with 
excess zeros, data that cannot take zero outcome, etc. Several 
extension to the commonly used standard Poisson/ negative 
binomial models are available to accommodate these special 
features. These model extensions include, but are not limited 

to the quasi Poisson, zero inflated Poisson/ negative binomial, 
hurdle Poisson/ negative binomial and the zero truncated 
Poisson/ negative binomial models. With advancement in 
software/ tools for statistical data analysis, these model 
extensions can be easily fitted in SAS, R, Stata and with many 
other statistical software packages. 
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